Kalkulator potęg to proste i wygodne narzędzie, które umożliwia szybkie obliczenie potęgi dowolnej liczby (wykonuje potęgowanie liczby). Wystarczy podać podstawę i wykładnik, a kalkulator automatycznie wyliczy wynik, który pojawi się po znaku równości.
25^(1/2)=√25=5------------------------------------- Najnowsze pytania z przedmiotu Matematyka ćw 2 i ćw 3 prosze o pomoc z góry dziękuje :) Obliczyć całkę[tex]\iiint_U \sin x \sin{(x+y)}\sin{(x+y+z)} \, dzdydx[/tex]po obszarze:[tex]U=[0,\pi]\times[0,\pi]\times[0,\pi][/tex] ćw 1 proszę o pomoc z góry dziękuje :) Na trójkącie ABC opisano okrąg o środku S. Długość najkrótszego z boków trójkąta ABC wynosi 10 cm. Odległości środka S od boków trójkąta wynoszą 5 cm, … 7 cm i 12 cm. Oblicz pro mień okręgu opisanego na trójkącie ABC i obwód tego trójkąta. W trójkącie prostokątnym ABC wysokość CD poprowadzona z wierzchołka C kąta prostego podzieliła przeciwprostokątną w stosunku 4:2. oblicz długość przec … iwprostokątnej AB jeżeli AC = 2√ o dokładny opis z rysunkiem. Z góry dziękuję błagam niech ktoś pomoże z tymi 2 zadaniami D: dam naj (2√3-3√6) ² jak po kolei to obliczyć? Podane liczby zaznaczono kropkami na osi liczbowej. Wskaż litery odpowiadające tym liczbom Oblicz, a następnie podaj liczbę przeciwną i liczbę odwrotną do wartości wyrażenia. A)5 1/2+(-1 1/4)-(-1)=. Liczba przeciwna___. Liczba odwrotna_____. … B) - 7,75-4,2+6,5-5,05=_______________ liczba przeciwna___ liczba odwrotna. Jeżeli mam 7 dag i 2 g = ….. g To wynik ma być ? = 702g Czy = 720 g Bo nie rozumiem …?
√25=5 10 do potęgi 25 to 1 i 25 zer Jak odejmiemy 5, to będziemy mieć 24 dziewiątki i 5 na końcu Czyli suma tych cyfr to:
W tym miejscu znajduje się zestawienie najważniejszych wzorów z działań na potęgach i pierwiastkach. Przykłady zastosowania tych wzorów znajdziesz w kolejnych rozdziałach. Definicja potęgi o wykładniku naturalnym \[a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n \text{ razy}}\] Wzory na potęgi o wykładnikach wymiernych \[ a^{-n}=\frac{1}{a^n}\quad (\text{dla }a\ne 0)\\[16pt] a^{\tfrac{1}{n}}=\sqrt[n]{a}\quad (\text{dla }a\ge 0)\\[16pt] a^{\tfrac{k}{n}}=\sqrt[n]{a^k}\quad (\text{dla }a\ge 0)\\[16pt] a^{-\tfrac{k}{n}}=\frac{1}{\sqrt[n]{a^k}}\quad (\text{dla }a\gt 0)\\[16pt] \] Wzory działań na potęgach \[ a^m\cdot a^n=a^{m+n}\\[16pt] \frac{a^m}{a^n}=a^{m-n}\\[16pt] a^n\cdot b^n=(a\cdot b)^n\\[16pt] \frac{a^n}{b^n}=\left (\frac{a}{b}\right )^n\\[16pt] \left(a^m \right)^n=a^{m\cdot n} \] Wzory działań na pierwiastkach \[ \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\\[16pt] \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \] Działania na bardziej skomplikowanych pierwiastkach wykonujemy najczęściej zamieniając pierwiastki na potęgi. \[ \sqrt[n]{a}=a^{\tfrac{1}{n}}\\[16pt] \sqrt[n]{a}\cdot \sqrt[m]{a}=a^{\tfrac{1}{n}}\cdot a^{\tfrac{1}{m}}=a^{\tfrac{1}{n}+\tfrac{1}{m}}\\[16pt] \frac{\sqrt[n]{a}}{\sqrt[m]{a}} =\frac{a^{\tfrac{1}{n}}}{a^{\tfrac{1}{m}}} =a^{\tfrac{1}{n}-\tfrac{1}{m}}\\[16pt] \] Inne wzory \[ a^0=1\quad (\text{dla }a\ne 0)\\[16pt] \sqrt{a^2}=|a| \]
Between 2.1 million and 3 million (sources vary) Palestinian Arabs live in the West Bank under both limited self-rule and Israeli military rule. The West Bank (excluding East Jerusalem) is also
Ta pomoc edukacyjna została zatwierdzona przez eksperta!Materiał pobrano już 334 razy! Pobierz plik przedstaw_wynik_działania_jako_potęgę_liczby_2 już teraz w jednym z następujących formatów – PDF oraz DOC. W skład tej pomocy edukacyjnej wchodzą materiały, które wspomogą Cię w nauce wybranego materiału. Postaw na dokładność i rzetelność informacji zamieszczonych na naszej stronie dzięki zweryfikowanym przez eksperta pomocom edukacyjnym! Masz pytanie? My mamy odpowiedź! Tylko zweryfikowane pomoce edukacyjne Wszystkie materiały są aktualne Błyskawiczne, nielimitowane oraz natychmiastowe pobieranie Dowolny oraz nielimitowany użytek własnyZnajdź odpowiedź na Twoje pytanie o Przedstaw wynik działania jako potęgę liczby 2 : A) 2*2^3*8^5 B) 10^6/5^6 ( to ułamek ) : 2^3 C) (4^5)^7. Odpowiedź:Przedstaw wynik działania jako potęge liczby 2 2 * 2 do potęgi 3 * 8 do potęgi 5 = 2^4 * (2³)^5 = 2^4 * 2^15 = 2^1910 do potęgi 6. Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – „Przejdź do Odrabiamy”, zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i. Przedstaw wynik działania jako potęgę liczby 2 : A) 2*2^3*8^5 B) 10^6/5^6 ( to ułamek ) : 2^3 C) (4^5)^7 D) 1/8*4^5. Question from @Strega25 – wynik w postaci potęgi liczby 2. odp to 2^frac{11}{2} frac{4 ^{3} cdot 16 ^{ frac{1}{4} } : sqrt[5]{32} }{ 64^{- frac{3}{4} } cdot 8. Potęgi i pierwiastki/Liczby/Szkoła średnia – Treści i pełne rozwiązania. przedstaw w postaci potęgi liczby 2. Wynik zapisz w postaci – a + b√ c. Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – Potęga. a^n = b. a^n – n-ta potęga liczby a ( a do potęgi n ). n – wykładnik potęgi. a – podstawa potęgi. b – wynik potęgowania. Przykład: 3^2. .. i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO. Klikając „Przejdź do Odrabiamy”, zgadzasz się na wskazane powyżej z podanych wielkości jest równa wielkości zapisanej na pomarańczowym tleKtóra z podanych wielkości jest największa ? 1250 m 1200 cm 100 dm 10,25 m 1250 cm. Ostatnia data uzupełnienia pytania: 2009-11-11 12:27: Rodzice dzieci, które zostały zapisane na dyżur wakacyjny w miesiącu. Prosimy rodziców o przynoszenie gałązek choinkowych różnej z podanych wielkości jest równa wielkości zapisanej na niebieskim tle. Question from @Halinabladek – Gimnazjum – nauczyciel, który zna i rozumie matematykę oraz wie po co jej uczy może do. krotność danej wielkości, podział na równe części, część z całości zadań z popularnych podręczników do matematyki, fizyki, chemii, biologii, geografii i innych. Portal i aplikacja edukacyjna gdzie jako potęgę liczby 2 2^18Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – Przedstaw w postaci potęgi liczby 2: 16^5*8^2*1/4*2^3 = 2. img. Powtórzenie potęgi i pierwiastki – Matematyka – liczbę zapisz jako potęgę liczby 2 kamczatka: Daną liczbę zapisz jako potęgę liczby 2 √8√8√8 wiem że √8 to 80,5. 29 wrz 21:42. Aga1.: a 8= się je jako a^n , gdzie n. Jeżeli wykładnik potęgi jest liczbą naturalną, to. Liczba 2 podniesiona do potęgi cfrac{1}{2}. Przedstawić wynik w postaci potęgi liczby 2. odp to 2^frac{11}{2} frac{4 ^{3} cdot 16 ^{ frac{1}{4} } : sqrt[5]{32} }{ 64^{- frac{3}{4} } cdot -2^4Kartkówka nr 4 z algebry liniowej 1. 1. Oblicz. ( -11 12. -16 17. )n .Oblicz 4. background image. Pobierz cały dokument. Rozmiar 1022,1 KB. 240/327, 208/2552, 209/8395, 105/5709, 111/6237, 125/2930, 722/5775, 738/8942, źródło: Oblicz. (mnoŜenie w zakresie 100). 4 x 8 = ….. 9 x 6 = ….. 7 x 9 = ….. 5 x 6 = ….. 7 x 7 = .Podczas wykonywania obliczeń zmiany procentowej obliczane są zmiany wartości liczbowych w czasie. Obliczanie zmiany procentowej jest formą normalizacji, 4 tys. odpowiedzi. tys. osób dostało pomoc. 7 – (5x + 4) = 7 – 5x – 4 = 3 – 5x. grendeldekt i 9 innych użytkowników uznało tę.
Product Dimensions : 11 x 4 x 7 inches; 2.45 Pounds. Item model number : LDW22. Department : mens. Date First Available : June 1, 2021. Manufacturer : ADIJE. ASIN : B0812KMRZ7. Best Sellers Rank: #10,823 in Clothing, Shoes & Jewelry ( See Top 100 in Clothing, Shoes & Jewelry) #52 in Men's Road
Choć niektórzy obawiają się potęgowania i uznają je ze działanie skomplikowane, to pokażemy Wam dzisiaj, że obliczanie liczby do potęgi 0 wcale nie musi być trudne ani szczególnie skomplikowane. Potęgowanie jest działaniem stanowiącym uogólnienie wielokrotnego mnożenia elementu przez siebie. Element, który jest potęgowany nazywa się podstawą, natomiast liczba czynników w mnożeniu to wykładnik. Wynik potęgowania stanowi potęgę elementu. Co zaś wiemy o wyniku potęgowania, jaki daje liczba do potęgi 0? Podpowiadamy. Najważniejsze w poniższym artykule: Według wzoru: a do potęgi 0 = 1, każda liczba podniesiona do potęgi 0 daje wynik 1. Potęga 0 – potęga zero Dla dowolnej liczby a, która jest różna od 0 zachodzi taki wzór: a do potęgi 0=1. Potęga 0 stanowi uważana jest za niejednoznaczną. Choć większość działów matematyki uznaje, że zero do potęgi zerowej daje 1, to zdarza się, że wyrażenie zero do potęgi 0 traktowane jest niejednoznacznie. Interpretując zero do potęgi 0 jako 1 upraszcza się wzory i wyklucza konieczność analizowania przypadków szczególnych w twierdzeniach. Jednak 0 do potęgi 0 traktujemy jako niejednoznaczne w tych sytuacjach, w których wykładnik zmienia się w sposób ciągły. Wielu badaczy argumentuje, że najlepsza wartość zero do potęgi 0 jest zależna od kontekstu, co sprawia, że jej zdefiniowanie pozostaje problematyczne. Pozostali zaś uważają, że zero do potęgi zerowej jest równe 1. Debata na temat potęgi zero trwa już od początków XVII wieku. Najczęściej jednak argumentuje się, że liczba do potęgi 0 daje nam 1, co spełnia zarówno funkcję estetyczną, jak i pragmatyczną. Choć jest to kwestia wciąż umowna, to nie da się ukryć, że jest to umowa wynikająca ze zdrowego rozsądku, która ułatwia życie matematykom i każdemu, kto dopiero odkrywa świat potęgowania i rozpoczyna swoją przygodę z potęgą zerową. Sprawdź: Ile to pierwiastek z 8? Ile to jest do potęgi 0? Uznaje się, że zawsze liczba podniesiona do potęgi 0 daje nam wynik 1. Wyraża się to we wzorze: a do potęgi 0 = 1. Z definicji tej wnioskujemy, że 0 do potęgi n = 0, zaś 1 do potęgi n = 1. Kiedy podnosimy daną liczbę do potęgi o wykładniku 0, powinniśmy korzystać z takiego wzoru: a do potęgi 0 = 1. Zgodnie z tym, co ukazuje powyższy wzór – każda liczba rzeczywista różna od zera podniesiona do potęgi 0 daje nam wynik 1. A zatem chcesz wiedzieć – ile to jest do potęgi 0? Spójrzmy na poniższe przykłady: 0 do potęgi 0 = 11 do potęgi 0 = 12 do potęgi 0 = 16 do potęgi 0 = 18 do potęgi 0 = 1itd. Zobacz też: Obliczanie obwodu koła – Jak obliczyć obwód koła? Musimy zapamiętać, że każda liczba podniesiona do potęgi zerowej daje nam wynik 1. Nie powinniśmy dać się zmylić w sytuacji, gdy będziemy musieli obliczyć coś do potęgi 0, np. siedem ósmych do potęgi zerowej. Liczba ujemna do potęgi 0 również zawsze wynosi 1. Pamiętajmy, że niezależnie od stopnia skomplikowania takiego działania, wynik zawsze jest równy 1. A zatem: 7/8 do potęgi 0 = 1¾ do potęgi 0 = 110/8 do potęgi 0 = 1-2 do potęgi 0 = 1Pierwiastek z 7 do potęgi 0 = 123 do potęgi 0 = 11,23 do potęgi 0 = 1itd. Jak widać na przykładzie potęgowania do potęgi zerowej, nie jest to działanie matematyczne szczególnie skomplikowane. W przypadku potęgi 0 musimy po prostu pamiętać o zasadzie, która tutaj dominuje i za każdym razem ją stosować.
Zapisz podane liczby w notacji wykładniczej. a) 357 * 10 do potęgi 4 b) 25,3 * 10 do potęgi 5 c) 0,013 * 10 do potęgi 15
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 .Liczba \(7^7\cdot 7^8\) jest równa A.\( 7^{56} \) B.\( 14^{56} \) C.\( 49^{15} \) D.\( 7^{15} \) DLiczba \(5^{17}\cdot 6^{17}\) jest równa A.\( 30^{34} \) B.\( 30^{17} \) C.\( 11^{17} \) D.\( 11^{34} \) BLiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CLiczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{40}\cdot 4^{20}\) jest równa A.\( 4^{40} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) AIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BDana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy A.\( x=7^2 \) B.\( x=7^{-2} \) C.\( x=3^8 \cdot 7^2 \) D.\( x=3 \cdot 7 \) AIloczyn \(9^{-5}\cdot 3^8\) jest równy A.\( 3^{-4} \) B.\( 3^{-9} \) C.\( 9^{-1} \) D.\( 9^{-9} \) CTrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) ALiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BDo przedziału \((1, \sqrt{2})\) należy liczba: A.\( \sqrt{3}-1 \) B.\( 2\sqrt{5}-3\sqrt{2} \) C.\( \sqrt{6}-\sqrt{3} \) D.\( \sqrt{5}-\sqrt{1} \) DLiczbę \(0{,}000421\) można zapisać w postaci \(a\cdot 10^k\), gdzie \(a \in \langle 1, 10 \rangle, k \in C\). Wówczas: A.\( a=0{,}421;\ k=-3 \) B.\( a=4{,}21;\ k=-5 \) C.\( a=4{,}21;\ k=-4 \) D.\( a=42{,}1;\ k=-6 \) CWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BKtóra z poniższych liczb jest większa od \(1\)? A.\( (0{,}1)^{-3} \) B.\( \left ( \frac{1}{2} \right)^{10} \) C.\( (-2)^{-4} \) D.\( \frac{1}{\sqrt{2}} \) AWiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się A.\( \sqrt[3]{6} \) B.\( 216 \) C.\( 36 \) D.\( 3 \) BLiczby \(A=(5^4)^3, B=5^5+5^5, C =5^{12} : 5^7, D=5^3 \cdot 5^6\) ustawiono w kolejności malejącej, zatem A.\( B>A>D>C \) B.\( A>D>B>C \) C.\( A>B>D>C \) D.\( C>B>D>A \) BLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BPo uproszczeniu wyrażenia \( \frac{(a^2:a^3)^{-2}}{a^{-5}} \), gdzie \( a \ne 0 \), otrzymamy A.\(a^7 \) B.\(a^{-3} \) C.\(a^3 \) D.\(a^{-7} \) ALiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ALiczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BPołowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa A.\(2^{30} \) B.\(2^{57} \) C.\(2^{63} \) D.\(2^{112} \) BLiczba \(\left ( \frac{3+\sqrt{3}}{\sqrt{3}} \right)^2\) jest równa A.\( 4 \) B.\( 9 \) C.\( \frac{3+\sqrt{3}}{3} \) D.\( 4+2\sqrt{3} \) DLiczba \(3^{\frac{9}{4}}\) jest równa A.\( 3\cdot \sqrt[4]{3} \) B.\( 9\cdot \sqrt[4]{3} \) C.\( 27\cdot \sqrt[4]{3} \) D.\( 3^9\cdot 3^{\frac{1}{4}} \) BWskaż równość prawdziwą. A.\( -256^2=(-256)^2 \) B.\( 256^3=(-256)^3 \) C.\( \sqrt{(-256)^2}=-256 \) D.\( \sqrt[3]{-256}=-\sqrt[3]{256} \) DLiczba \(\frac{\sqrt{8}}{\sqrt[3]{16}}\) jest równa A.\( \sqrt[3]{2} \) B.\( \sqrt[4]{2} \) C.\( \sqrt[5]{2} \) D.\( \sqrt[6]{2} \) DLiczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa A.\( 2^{\frac{20}{3}} \) B.\( 2 \) C.\( 2^{\frac{4}{5}} \) D.\( 2^3 \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) A
4.2’ x 1.8’ x 2’ 2.8’ x 1.5’ x 3.2’ 1.7’ x 2.25’ x 4.7’ 4.7' x 1.7' x 2.25' Storage Capacity : Designed to fit up to two 60 gallon garbage cans or recycling bins : 8 cubic feet of internal storage : 7 cubic feet of internal storage : 7 cubic feet of internal space : 7 cubic feet of internal space : Color
a) (1/3) do potęgi -200 czy 2 do potęgi 300 b) (-3) do potęgi 600 czy (1/5) do potęgi -400 Rodeway Jeśli podnosimy liczbę do potęgi na minusie to bierzemy odwrotność tej liczby, czyli w tym przypadku 3^200 będzie.
=pierwiastek z 8 1/390625 cały pierwiastek^3 =(1/5)^3=1/125 a zrobisz jeszcze 0,0081 do potęgi -1, 25 i 0,00000256 do potęgi 0,375 ? Spoko
Maryland ranks No. 48 in the country, yielding 23.2 points per game. The Terrapins are allowing 124.1 rushing yards per game (sixth in the Big Ten) − that will also be the latest test for
. s073yaaxzl.pages.dev/378s073yaaxzl.pages.dev/240s073yaaxzl.pages.dev/289s073yaaxzl.pages.dev/783s073yaaxzl.pages.dev/2s073yaaxzl.pages.dev/449s073yaaxzl.pages.dev/345s073yaaxzl.pages.dev/267s073yaaxzl.pages.dev/699s073yaaxzl.pages.dev/740s073yaaxzl.pages.dev/576s073yaaxzl.pages.dev/608s073yaaxzl.pages.dev/274s073yaaxzl.pages.dev/860s073yaaxzl.pages.dev/90
25 do potęgi 1 2